A THEOREM IN HOMOLOGICAL ALGEBRA AND STABLE HOMOTOPY OF PROJECTIVE SPACES

BY ARUNAS LIULEVICIUS(1)

Introduction. The paper exhibits a general change of rings theorem in homological algebra and shows how it enables to systematize the computation of the stable homotopy of projective spaces.

Chapter I considers the following situation: R and S are rings with unit, $h: R \to S$ is a ring homomorphism, M is a left S-module. If an S-free resolution of M and an R-free resolution of S are given, Theorem I.1. shows how to construct an R-free resolution of M.

Chapter II is devoted to computing the initial stable homotopy groups of projective spaces. Here the results of Chapter I are applied to the homomorphism $\alpha: A \to A$ of the Steenrod algebra over Z_2 (see I.3). The main tool in computing stable homotopy is the Adams spectral sequence [1]. Let RP^{∞} , CP^{∞} , HP^{∞} be the real, complex, and quaternionic infinite-dimensional projective spaces, respectively. If X is a space, let $\Pi_m^S(X)$ denote the mth stable homotopy group of X [1]. Part of the results of Chapter II can be presented as follows:

m:	1	2	3	4	5	6	7	8
RP^{∞} :	Z_2	Z_2	Z_8	Z_2	0	Z_2	$Z_{16} \oplus Z_2$	$Z_2 \oplus Z_2 \oplus Z_2$
CP^{∞} :	0	Z	0	Z	Z_2	Z	Z_2	$Z \oplus Z_2$
HP^{∞} :	0	0	0	Z	Z_2	Z_2	0	\boldsymbol{z}

CHAPTER I. HOMOLOGICAL ALGEBRA

1. A change of rings theorem. Let R and S be rings with unit, $h: R \to S$ a homomorphism of rings; under h, any left S-module can be considered as a left R-module.

Let M be a left S-module. Let Y be an S-free resolution of M: $Y = \sum_{q \ge 0} Y_q$, with differential d' and augmentation ε' . Let X_q be an R-free resolution of Y_q : differential d'' and augmentation ε_q onto Y_q .

Let
$$C = \sum_{q \ge 0} X_q$$
, $C_k = \sum_{q+r=k} X_{qr}$, and augmentation $\varepsilon = \varepsilon'(\sum_q \varepsilon_q)$. If Presented to the Society, April 14, 1962; received by the editors April 5, 1962 and, in revised

form, June 12, 1962.

(1) This paper was written while the author held a National Science Foundation post-

⁽¹⁾ This paper was written while the author held a National Science Foundation post-doctoral fellowship.

 $f: C \to C$ is a homomorphism which lowers total degree, then $f = \sum_{k=0}^{\infty} f_k$, where $f_k: X_q \to X_{q-k}$.

THEOREM I.1. There exists a differential $d: C \to C$ such that $\{C, d, \varepsilon\}$ is an R-free resolution of M. The differential d can be chosen to have the properties:

- (1) d_0 is induced from d'',
- (2) $d'\varepsilon_{q+1} = \varepsilon_q d_1$,
- (3) $\sum_{i=0}^{k} d_i d_{k-i} = 0;$

conversely, any map with properties (1), (2), (3) is a differential which makes C acyclic.

REMARK. Let G be a finite group, H a normal subgroup of G, K a ring; let R = K[G], S = K[G/H], M = K. Theorem I.1 was proved by Wall [14] in this special case. The proof presented here is a straightforward translation to the general case.

Proof of Theorem I.1. Let us show that any d with properties (1), (2), (3) makes C acyclic. Filter C by $F^pC = \sum_{q \le p} X_q$. The differential d preserves filtration, and the associated spectral sequence converges to H(C). The differential in E^0 is precisely d_0 , hence $E^1 = Y$, with d^1 corresponding to d' because of (2). Since Y is a resolution of M, $E^2 = E^{\infty} = M$, hence C is acyclic.

To prove that d with properties (1), (2), (3) exists is easy. Since the X_k are R-free resolutions of Y_k , we can construct an R-map $d_1\colon X_{q,r}\to X_{q-1,r}$ such that $\varepsilon_{q-1}d_1=d'\varepsilon_q$. To construct the maps d_k , $k\geq 2$, we use induction on the total degree q+r of $X_{q,r}$. We set $d_k=0$ if it lands in $X_{q',r'}$ with q'<0. Suppose d has been defined on $X_{q',r'}$ with q'+r'< q+r, and d_0,\cdots,d_k have been defined on $X_{q,r}$. Let $f=-\sum_{i=1}^k d_i d_{k+1-i}$. We claim there exists a map d_{k+1} such that $d_0 d_{k+1}=f$. To prove this it suffices to prove that $d_0 f=0$ and $\varepsilon_{q-k-1} f=0$, but this is easy:

$$d_0 f = -\sum_{i=1}^{k+1} d_0 d_i d_{k+1-i} = \sum_{i=1}^{k+1} \sum_{j=1}^{i} d_j d_{i-j} d_{k+1-i}$$
$$= \sum_{j=1}^{k+1} d_j \sum_{i=j}^{k+1-j} d_{i-j} d_{k+1-i} = 0,$$

which completes the proof of Theorem I.1.

2. Hopf algebras. Let E, F be graded, connected, associative Hopf algebras over field a K [12]. Suppose that F is a Hopf subalgebra of E. Then, according to Theorem 2.5 of [12], E is free as a right (or left) F-module. Therefore we have

PROPOSITION I.2. $E \otimes_F$ is an exact functor of left F-modules into left E-modules.

We shall say that F is normal in E if $\overline{F}E = E\overline{F}$, where \overline{F} denotes the augmentation ideal of F. Let $B = E/|F| = E/E\overline{F}$.

PROPOSITION I.3. If W is an F-free resolution of K, then $E \otimes_F W$ is an E-free resolution of B.

Proof. Proposition I.2 and $E \otimes_F K = B$.

REMARK. Let R=E, S=B, and $h: R\to S$ the projection map. Let M be a B-module, $Y=B\otimes \bar{Y}$ a B-free resolution of M, $U=F\otimes \bar{U}$ an F-free resolution of K. Then, according to the proposition above, we can take for X_q in Theorem I.1. the complex $E\otimes \bar{Y}_q\otimes \bar{U}$ with the differential induced from U (see [10]).

3. The Steenrod algebra. Let A be the Steenrod algebra [11] over Z_2 . The graded dual A^* is a polynomial algebra and the squaring map in A^* is a Hopf algebra map α^* . Let $\alpha: A \to A$ be the dual of α^* ; α is defined by $\alpha(Sq^{2^{r+1}}) = Sq^{2^r}$.

If I is a finitely nonzero sequence of non-negative integers, then we let Sq^I denote the Milnor basis element corresponding to I. Let Δ_i be the sequence consisting of 1 in the *i*th place and zeros elsewhere. Define the elements

$$Q_i = Sq^{\Delta_i}, \quad R_i = Sq^{2\Delta_i}.$$

Let C be the subalgebra of A generated by 1 and Q_k , $k = 0, 1, \dots$; B the subalgebra of A generated by 1, Q_0 , and R_k , $k = 0, 1, \dots$.

PROPOSITION I.4. B and C are normal Hopf subalgebras of A, and

Kernel
$$\alpha = A\bar{C}$$
,

Kernel
$$\alpha \circ \alpha = A\overline{B}$$
.

Proof. Immediate consequence of Lemma 2.4.2 of [2].

REMARKS. 1. The preceding proposition states that we may consider α and $\alpha \circ \alpha$ as the projection maps $A \to A//C$, $A \to A//B$, respectively.

2. The map α halves the grading. Let \widetilde{A} denote A with the grading of every element multiplied by two. Then $\alpha: A \to \widetilde{A}$ preserves grading. The reader is asked to make such adjustments in the following pages.

It will be necessary to know the groups $\operatorname{Ext}_{C}^{s,t}(Z_2, Z_2)$, $\operatorname{Ext}_{B}^{s,t}(Z_2, Z_2)$. The first is easily determined, for C is a Grassman algebra:

$$\operatorname{Ext}_{C}^{*,*}(Z_{2},Z_{2})=Z_{2}[q_{0},\cdots,q_{k},\cdots],$$

where the polynomial generator $q_k \in \operatorname{Ext}^{1,2^{k+1}-1}$.

We compute $\operatorname{Ext}_B^{s,t}(Z_2,Z_2)$ using Theorem I.1. We shall use the standard minimal resolution of Z_2 over C. Generators will be in one-to-one correspondence with finitely nonzero sequences of integers I (the free C-generator corresponding to I will be denoted by [I]). Let $I = (i_0, i_1, \dots, i_k, \dots)$, then degree [I]

= $\sum_k i_k$, grade $[I] = \sum_k i_k (2^{k+1} - 1)$. The differential in the minimal resolution is defined by

$$\tilde{d}[I] = \sum_{r=0}^{\infty} Q_r [I - \Delta_r],$$

where we set $[I - \Delta_r] = 0$ if $i_r = 0$.

According to Proposition I.4, $\operatorname{Ker} \alpha \mid B = B\bar{C}$, and C is normal in B. For the module $X_{i,j}$ in Theorem I.1 we take the free B-module on generators $[I] \otimes [J]$, where degree [I] = i, degree [J] = j, and grade $([I] \otimes [J]) = 2$ grade [I] + grade [J]. The augmentation ε_i is defined by $\varepsilon_i([I] \otimes [J]) = 0$ if degree [J] > 0, $\varepsilon_i([I] \otimes [J]) = [I]$ if degree [J] = 0. Both d_0 and d' are defined by the formula for \tilde{d} above. An easy induction on the degree of [J] shows that we can define the maps d_k for $k \ge 1$ as follows:

$$\begin{split} d_{1}[I] \otimes \big[J \big] &= \sum_{k} R_{k} \big[I - \Delta_{k} \big] \otimes \big[J \big] + \sum_{k} (j_{k+1} + 1) \big[I - \Delta_{k} \big] \otimes \big[J - \Delta_{0} + \Delta_{k+1} \big], \\ d_{2}[I] \otimes \big[J \big] &= \sum_{k} (j_{i+1} + 1) Q_{0} \big[I - \Delta_{0} - \Delta_{i} \big] \otimes \big[J + \Delta_{i+1} \big], \\ d_{3}[I] \otimes \big[J \big] &= \sum_{k < t} (j_{k+1} + 1) (j_{t+1} + 1) \big[I - \Delta_{0} - \Delta_{k} - \Delta_{t} \big] \otimes \big[J + \Delta_{k+1} + \Delta_{t+1} \big] \\ &+ \sum_{k} \binom{j_{t+1} + 2}{2} \big[I - \Delta_{0} - 2\Delta_{t} \big] \otimes \big[J + 2\Delta_{t+1} \big], \end{split}$$

 $d_n = 0$ for $n \ge 4$.

Since we will only use the groups $\operatorname{Ext}_{B}^{s,t}(Z_2,Z_2)$ for t-s<13, it is sufficient to consider the generators $[I]\otimes [J]$ in the resolution for which $i_k=0$ for $k\geq 2$, $j_r=0$ for $r\geq 3$. Thus for t-s<13 $\operatorname{Ext}_{B}^{s,t}(Z_2,Z_2)$ is additively the homology of the bi-graded algebra $Z_2[x_0,x_1,y_0,y_1,y_2]$, where grade $(x_i)=2^{i+2}-2$, $\operatorname{grade}(y_j)=2^{j+1}-1$, degree $(x_i)=\operatorname{degree}(y_j)=1$, under the differential $\delta_1+\delta_2$, where δ_1 is a derivation and

$$\delta_1(x_i) = 0, \ \delta_1(y_0) = 0, \ \delta_1(y_i) = y_0 x_{i-1};$$

 δ_2 is a map of $Z_2[x_0, x_1, y_0]$ -modules with

$$\begin{split} \delta_2(x_i) &= 0, \quad \delta_2(y_0) = 0, \\ \delta_2(y_1^{m_1} y_2^{m_2}) &= m_1 m_2 x_0^2 x_1 y_1^{m_1 - 1} y_2^{m_2 - 1} + \binom{m_1}{2} x_0^3 y_1^{m_1 - 2} y_2^{m_2} \\ &+ \binom{m_2}{2} x_0 x_1^2 y_1^{m_1} y_2^{m_2 - 2}, \end{split}$$

and $\delta_1\delta_2 + \delta_2\delta_1 = 0$. We list some obvious cycles under $\delta_1 + \delta_2$ in the following table, and give classes in Ext_{B_1} which they determine. $(B_1$ is the subalgebra of B generated by Q_0 , R_0 , R_1 , and $\operatorname{Ext}_{B_1}^{s,t}(Z_2,Z_2) \cong \operatorname{Ext}_{B}^{s,t}(Z_2,Z_2)$ for t-s<13).

_	٠.			
1		ם	т	D

Cycle	Degree	Grade	Class
Уo	1	1	g ₀
x_0	1	2	k_{0}
x_1	1	6	k_1
$x_0y_2 + x_1y_1$	2	9	γ
$y_0y_1^2 + x_0^2y_1$	3	7	$ au_{0}$
$y_0 y_2^2 + x_0 x_1 y_2$	3	15	$ au_1$
y_1^4	4	12	ω_1
y_2^4	4	28	ω_2
$y_0 y_1^2 y_2^2 + x_0^2 y_1 y_2^2$	5	21	$ au_{01}$
$+ x_0 x_1 y_1^2 y_2$			

PROPOSITION I.5. Ext $_{B_1}^{s,t}(Z_2,Z_2)$ is generated as an algebra by the classes

$$g_0, k_0, k_1, \gamma, \tau_0, \tau_1, \tau_{01}, \omega_1, \omega_2$$
.

Furthermore, it is a free $Z_2[\omega_1,\omega_2]$ -module with the following monomials as generators:

$$\begin{split} g_0^n, & g_0^n \tau_0, & g_0^n \tau_1, & g_0^n \tau_{01}, & n \ge 0, \\ k_0^i k_1^j, & 0 \le i \le 2, & 0 \le j & (if \ i > 0, \ then \ j \le 1), \\ k_0^i k_1^j \gamma, & k_1^j \gamma^2, & k_1^j \gamma^3. \end{split}$$

Proof. Find the homology under δ_1 , decompose the homology into a tensor product of standard complexes under δ_2 , and use the Künneth theorem over the ring $Z_2[x_0]$.

REMARK. Once $\operatorname{Ext}_{B_1}(Z_2, Z_2)$ is known, it is very easy to construct a minimal resolution for Z_2 over B_1 . The task is left to the reader.

4. Operations of Ext and the Adams spectral sequence. Let A be the Steenrod algebra over Z_p , L a left A-module. There is a natural map

$$\mu : \operatorname{Ext}_A^{q,u}(L, \mathbb{Z}_p) \otimes \operatorname{Ext}_A^{r,v}(\mathbb{Z}_p, \mathbb{Z}_p) \to \operatorname{Ext}_A^{q+r,u+v}(L, \mathbb{Z}_p)$$

which makes $\operatorname{Ext}_A(L, Z_p)$ into a right $\operatorname{Ext}_A(Z_p, Z_p)$ -module. For the definition of μ see, for example, [2]. We write $\alpha * \beta$ for $\mu(\alpha \otimes \beta)$.

For the Adams spectral sequence see [1].

THEOREM I.6 (ADAMS). The spectral sequence for the sphere S⁰ operates on the spectral sequence for any arbitrary space X. In particular, if

$$h \in \operatorname{Ext}_A^{s,t}(Z_p, Z_p), \qquad a \in \operatorname{Ext}_A^{u,v}(H^*(X), Z_p),$$
 and $d_j(h) = 0, \ j = 2, \cdots, r, \ d_k(a) = 0, \ k = 2, \cdots, r - 1, \ then$
$$d_r(\{a*h\}) = \{d_ra\}*h.$$

Proof. The proof of Theorem 2.2 of [1]; see also Théorème IIB, Exposé 19 of [6].

CHAPTER II. STABLE HOMOTOPY OF PROJECTIVE SPACES

1. The prime p = 2. Let RP^{∞} , CP^{∞} , HP^{∞} be the real, complex, and quaternionic infinite-dimensional projective spaces, respectively. It is well known that

$$(1) H*(RP^{\infty}; Z_2) = Z_2[x],$$

$$(2) H^*(CP^{\infty}; Z_2) = Z_2[y],$$

$$(3) H^*(HP^{\infty}; Z_2) = Z_2 \lceil u \rceil,$$

where x, y, u are the nonzero 1, 2, 4-dimensional classes, respectively. Let L, M, Nbe the elements of positive degree in (1), (2), (3), in the order given. Let $\alpha: A \to A$ be the dual of the squaring map (see Proposition I.3).

PROPOSITION II.1. There are Z_2 -isomorphisms $f: M \to L$, $g: N \to M$ such that the following diagram is commutative:

$$\begin{array}{ccc}
A \otimes N & \longrightarrow N \\
 & \downarrow & \downarrow & \downarrow & g \\
A \otimes M & \longrightarrow M \\
 & \downarrow & \downarrow & \downarrow & f \\
A \otimes L & \longrightarrow L,
\end{array}$$

where the horizontal arrows indicate the action of A.

Proof. According to [11], if $\theta \in A$, then

(5)
$$\theta x = \sum_{n=0}^{\infty} \langle \xi_n, \theta \rangle x^{2^n}.$$

Let $h: RP^{\infty} \to CP^{\infty}$ be a map such that $h^*(y) = x^2$; h^* is a monomorphism. Thus from (5) and h^*

$$\theta y = \sum_{n=0}^{\infty} \langle \xi_n^2, \theta \rangle y^{2^n}.$$

Let $f: M \to L$ be the algebra map given by f(y) = x. Then $f(\theta y) = \alpha(\theta) f(y)$, for $\langle \xi_n^2, \theta \rangle = \langle \alpha^*(\xi_n), \theta \rangle = \langle \xi_n, \alpha(\theta) \rangle$. With this choice for f, the bottom rectangle of (4) is commutative. The proof is completed by defining g(u) = y and considering a map $k: CP^{\infty} \to HP^{\infty}$ such that $k^*(u) = y^2$.

REMARK. Proposition II.1 is used by S. P. Novikov in his investigation of Thom spectra (dissertation – unpublished).

According to the proposition M and N are isomorphic to L as A-modules through the homomorphisms $\alpha, \alpha \circ \alpha$, respectively. We are all set to apply the change of rings Theorem I.1. since we know the cohomology of the subalgebras C and B (at least in low dimensions, see Proposition I.3).

Before we introduce the results, let us define some elements in

$$\operatorname{Ext}_{A}(\mathbb{Z}_{2}\mathbb{Z}_{2})$$
: $g_{0} \in \operatorname{Ext}^{1,1}$, $h_{i} \in \operatorname{Ext}^{1,2^{i+1}}$, $i = 0, 1, \cdots$

(the element g_0 corresponds to the element h_0 of [2]; our h_i corresponds to h_{i+1} of [2]).

PROPOSITION II.2. As an $\operatorname{Ext}_A(Z_2, Z_2) \in module$, $\operatorname{Ext}_A^{s,t}(L, Z_2)$ has the following elements as generators for $t-s \leq 10$ (if $s \leq 2$) and $t-s \leq 9$ (if s > 2):

$$e_{0.1}, e_{0.3}, e_{0.7}, e_{2.10}, e_{4.13}$$

where $e_{s,t}$ denotes a nontrivial class in $\operatorname{Ext}_A^{s,t}(L, \mathbb{Z}_2)$. A \mathbb{Z}_2 -basis in these dimensions is given by the following set of classes:

$$\begin{split} e_{0,1}, & e_{0,1}*h_0, & e_{0,1}*h_1, & e_{0,1}*h_2, & e_{0,1}*h_0h_2, \\ e_{0,1}*h_1^2, & e_{0,3}, & e_{0,3}*g_0, & e_{0,3}*g_0^2, & e_{0,3}*h_1, \\ e_{0,3}*h_2, & e_{0,3}*g_0h_2, & e_{0,7}*g_0^k, & k = 0,1,2,3, \\ e_{0,7}*h_0, & e_{0,7}*h_0^2, & e_{2,10}, & e_{2,10}*h_0, & e_{4,13}. \end{split}$$

Proof. Explicit minimal resolution, using the methods of [8].

REMARKS. Compare Proposition II.2 with the results of Adams vanishing Theorem [4]. Also $e_{4,13} = Pe_{0,1}$ (see Theorem 5 of [4]).

PROPOSITION II.3. $Ext_A^{s,t}(M, \mathbb{Z}_2)$ has the following \mathbb{Z}_2 -basis for $t - s \leq 11$:

$$e_{0,2} * g_0^n$$
, $e_{0,6} * g_0^n$, $e_{1,5} * g_0^n$, $e_{2,12} * g_0^n$, $e_{3,11} * g_0^n$, $n = 0, 1, \dots$,
 $e_{0,2} * h_1$, $e_{0,2} * g_0 h_1$, $e_{0,2} * h_2 g_0^k$, $k = 0, 1, 2, 3$,
 $e_{0,6} * h_0$, $e_{0,6} * h_0^2$, $e_{2,13} * g_0^k$, $k = 0, 1, 2, 3$, $e_{3,14}$.

PROPOSITION II.4. Ext_A^{s,t} (N, Z_2) for $t - s \le 13$ has the following Z_2 -basis:

$$\begin{split} &e_{0,4}*g_0^n, \quad e_{0,12}*g_0^n, \quad e_{3,11}*g_0^n, \quad n=0,1,2,\cdots, \\ &e_{0,4}*h_0, \quad e_{0,4}*h_0^2, \quad e_{1,10}, \\ &e_{1,10}*h_0, \quad e_{1,10}*h_0^2, \quad e_{1,12}*g_0^k, \qquad k=0,1,2,3, \\ &e_{1,12}*h_0, \quad e_{2,13}, \quad e_{2,13}*h_0, \quad e_{2,13}*h_0^2, \quad e_{5,18}, \quad e_{0,12}*h_0. \end{split}$$

PROPOSITION II.3 and II.4 are proved by using the constructions of Theorem I.1. In the proof of Proposition II.3 we take an A-minimal resolution Y of L and take the tensor product of Y with a minimal resolution of Z_2 over C. In the proof of Proposition II.4 the tensor product of Y with a minimal resolution of Z_2 over B is examined. In both cases, for the range of S and S given, only the map S need be examined.

We give a sample computation. The minimal resolution of L over A for $t - s \le 5$ can be taken as follows:

$$0 \leftarrow L \stackrel{\varepsilon}{\leftarrow} C_0 \stackrel{d}{\leftarrow} C_1 \stackrel{d}{\leftarrow} C_2 \stackrel{d}{\leftarrow} 0 \leftarrow 0 \cdots$$

where C_0 is free on $c_{0,1}$, $c_{0,3}$, C_1 is free on $c_{1,3}$, $c_{1,4}$, $c_{1,5}$, C_2 is free on $c_{2,5}$; the maps ε , d are defined to be

$$\varepsilon(c_{0,1}) = x, \varepsilon(c_{0,3}) = x^3,
d(c_{1,3}) = a_1c_{0,1},
d(c_{1,4}) = Q_0c_{0,3} + Q_1c_{0,1},
d(c_{1,5}) = a_2c_{0,1},
d(c_{2,5}) = Q_0c_{1,4} + a_1c_{1,3},$$

where $a_i = Sq^{2^i}$, $Q_{i+1} = [a_{i+1}, Q_i]$.

Take generators [I] of a minimal resolution W of Z_2 over C in one-to-one correspondence with finitely nonzero sequence I of non-negative integers. We denote by Δ_i the sequence consisting of 1 in the *i*th place and zeroes elsewhere; we let I - J be the sequence of term-by-term differences (we set [I - J] = 0 if at least one entry is negative). The differential d'' in W is defined by

$$d''[I] = \sum_{i=0}^{\infty} Q_i[I - \Delta_i].$$

Let us show as an example that we can define d_1 on $c_{1,5} \otimes [n\Delta_0]$ as

$$a_{3}c_{0,1} \otimes [n\Delta_{0}] + a_{1}a_{2}c_{0,1} \otimes [(n-1)\Delta_{0} + \Delta_{1}] + a_{1}c_{0,1} \otimes [(n-1)\Delta_{0} + \Delta_{2}]$$

$$+ a_{2}c_{0,1} \otimes [(n-2)\Delta_{0} + 2\Delta_{1}] + c_{0,1} \otimes [(n-2)\Delta_{0} + \Delta_{1} + \Delta_{2}]$$

$$+ a_{1}c_{0,1} \otimes [(n-3)\Delta_{0} + 3\Delta_{1}] + c_{0,1} \otimes [(n-4)\Delta_{0} + 4\Delta_{1}].$$

We shall need relations in addition to those exhibited in Chapter I.3:

$$Q_0 a_3 = a_3 Q_0 + a_1 a_2 Q_1 + a_1 Q_2,$$

 $Q_0 a_2 = a_2 Q_0 + a_1 Q_1.$

The proof that (6) is admissible by induction on n. Since $\alpha(a_3) = a_2$, (6) is fine for n = 0. Suppose (6) is acceptable for n > 0:

$$\begin{split} d_1 d_0 (c_{1,5} \otimes \big[(n+1) \Delta_0 \big]) &= d_1 Q_0 c_{1,5} \otimes \big[n \Delta_0 \big] \\ &= Q_0 a_3 c_{0,1} \otimes \big[(n-1) \Delta_0 + \Delta_1 \big] \\ &+ Q_0 a_1 a_2 c_{0,1} \otimes \big[(n-1) \Delta_0 + \Delta_2 \big] \\ &+ Q_0 a_2 c_{0,1} \otimes \big[(n-2) \Delta_0 + 2 \Delta_1 \big] \\ &+ Q_0 c_{0,1} \otimes \big[(n-2) \Delta_0 + \Delta_1 + \Delta_2 \big] \\ &+ Q_0 c_{0,1} \otimes \big[(n-2) \Delta_0 + \Delta_1 + \Delta_2 \big] \\ &+ Q_0 c_{0,1} \otimes \big[(n-3) \Delta_0 + 3 \Delta_1 \big] \\ &+ Q_0 c_{0,1} \otimes \big[(n-4) \Delta_0 + 4 \Delta_1 \big] \\ &= (a_3 Q_0 + a_1 a_2 Q_1 + a_1 Q_2) c_{0,1} \otimes \big[(n-1) \Delta_0 + \Delta_1 \big] \\ &+ (a_1 Q_0 + a_2 Q_1 + Q_2) c_{0,1} \otimes \big[(n-1) \Delta_0 + \Delta_1 \big] \\ &+ (a_2 Q_0 + a_1 Q_1) c_{0,1} \otimes \big[(n-2) \Delta_0 + 2 \Delta_1 \big] \\ &+ Q_0 c_{0,1} \otimes \big[(n-2) \Delta_0 + \Delta_1 + \Delta_2 \big] \\ &+ (a_1 Q_0 + Q_1) c_{0,1} \otimes \big[(n-3) \Delta_0 + 3 \Delta_1 \big] \\ &+ Q_0 c_{0,1} \otimes \big[(n-4) \Delta_0 + 4 \Delta_1 \big], \end{split}$$

which is precisely d_0 of (6) for n + 1, which completes the inductive step.

Let $\Pi_m^S(X; p)$ be the *m*th stable homotopy group of X [1] modulo the subgroup of elements having finite order prime to p. $\Pi_m^S(X; p)$ may be computed up to extensions by the Adams spectral sequence for the prime p; the extension can often be determined if we remark that $*g_0$ corresponds to multiplication by p in Π_m^S .

PROPOSITION II.5. In the Adams spectral sequence (p=2) for RP^{∞} all differentials vanish in total degrees ≤ 10 .

Proof. Since in the Adams spectral sequence for the sphere $d_r(g_0) = d_r(h_0) = d_r(h_1) = d_r(h_2) = 0$ for all r [4] according to Theorem I.6. it suffices to prove

that all differentials vanish on $e_{0\,1}$, $e_{0,3}$, $e_{0\,7}$, $e_{2\,10}$, $e_{4\,13}$, but this is easy for the differentials land on groups which are zero according to Proposition II.2.

Since $RP^{\infty} = K(\mathbb{Z}_2, 1)$ we do not have to consider the spectral sequences for p odd: they are all zero. Since $*g_0$ corresponds to multiplication by 2 we have:

THEOREM II.6. The stable homotopy groups $\Pi_k^S(RP^{\infty})$ are as follows for $k \leq 9$:

$$k: \Pi_k^S:$$
0 0
1 Z_2
2 Z_2
3 Z_8
4 Z_2
5 0
6 Z_2
7 $Z_{16} \oplus Z_2$
8 $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2$
9 $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2$

We precede the next theorem by a proposition about stable secondary cohomology operations.

PROPOSITION II.7 (ADAMS). There exists a stable secondary cohomology operation Ψ of degree 4 such that if $y \in H^2(CP^{\infty}; \mathbb{Z}_2)$ then $\Psi(y)$ is defined and

$$\Psi(y) = y^3 \text{ modulo zero.}$$

Proof. This is Theorem 4.4.1 of [2].

THEOREM II.8. In the Adams spectral sequence for CP^{∞} (p=2) the only nontrivial differential in total degrees ≤ 9 is

$$d_2(e_{0\ 6}) = e_{0\ 2} * g_0 h_1.$$

Furthermore, the groups $\Pi_m^S(CP^\infty; \mathbb{Z}_2)$ are as follows for $m \leq 8$:

$$m: 0 1 2 3 4 5 6 7 8$$

 $\Pi_m^S: 0 0 Z 0 Z Z_2 Z Z_2 Z \oplus Z_2.$

Proof. Suppose $a * g_0^j = 0$ for some j. Then if $d_r(a) = b$, $b * g_0^j = 0$ in E_r ,

according to Theorem I.6. This settles all differentials in total degrees ≤ 9 , except $d_2(e_{0,6})$. According to Proposition II.7, $e_{0,6}$ cannot be a d_r -cycle for all r, since it is not in the image of the mod 2 Hurewicz homomorphism. This implies that r=2, for d_r , r>2 is automatically zero on $e_{0,6}$.

THEOREM II.9. In the Adams spectral sequence for HP^{∞} (p=2) all differentials vanish in total degrees ≤ 11 . Furthermore, the groups $\Pi_m^S(HP^{\infty};2)$ for $m \leq 10$ are as follows:

$$m: 0 1 2 3 4 5 6 7 8 9 10$$

 $\Pi_m^S: 0 0 0 Z Z_2 Z_2 0 Z Z_2 Z_2.$

Proof. Proposition II.4 and argument as for Theorem II.8.

2. The primes p > 2. In order to complete our study of the initial stable homotopy of projective spaces, we must examine the Adams spectral sequences for CP^{∞} HP^{∞} , for primes p > 2.

The following two propositions are proved by constructing minimal resolutions for low total degrees. The task is straightforward and is left to the reader.

Let $M = \tilde{H}^*(CP^{\infty}; Z_p)$ the augmented cohomology of CP^{∞} , p an odd prime, A the Steenrod algebra over Z_p .

PROPOSITION II.10. A Z_p -basis (p > 2) for $\operatorname{Ext}_A^{s,t}(M, Z_p)$ for $t - s \leq 6p - 4$ is furnished by classes

$$e_{0,2j} * g_0^n$$
, $e_{1,2k+2p-1} * g_0^n$, $e_{2,2r+4p-2} * g_0^n$,
 $e_{1,4p-2}$, $e_{1,4p-2} * g_0$,

where $j = 1, \dots, p-1, 2p-1, k = 1, \dots, p-1, r = 2, \dots, p-1 \ (p > 3 \ for \ r), n = 0, 1, \dots$; if p = 3, we have in addition

$$e_{0,2}*h_1$$
, $e_{1,4p-2}*h_0$, $e_{0,2}*h_1g_0$, $e_{0,2}*h_1g_0^2$.
Let $N = \tilde{H}^*(HP^{\infty}; Z_p)$.

PROPOSITION II.11. Let p > 2. Then $\operatorname{Ext}_A^{s,t}(N, \mathbb{Z}_p)$ for $t - s \leq 6p - 2$ has the following elements as a \mathbb{Z}_p -basis:

$$e_{0,4k} * g_0^n$$
, $e_{1,4j+2p-1} * g_0^n$, $e_{2,4j+4p-2} * g_0^n$,
 $e_{0,4} * h_0$, $e_{0,4} * h_0 g_0$, $e_{0,4} * h_0 g_0^2$,

where
$$n = 0, 1, \dots, k = 1, \dots, \frac{1}{2}(p-1), \frac{1}{2}(3p-1), j = 1, \dots, \frac{1}{2}(p-1).$$

We are now ready to examine the Adams spectral sequence for CP^{∞} , HP^{∞} for an odd prime p.

PROPOSITION II.12. There exists a stable secondary cohomology operation Λ of

degree 4p-4, defined on cohomology classes x such that $Q_0x=0$, $Q_1x=0$, $P^2x=0$, such that

$$\Lambda(y) = by^{2p-1} \mod ulo \ zero,$$

where $b \neq 0$ and $y \in H^2(CP^{\infty}; Z_p)$.

PROPOSITION II.13. There exists a stable secondary cohomology operation Γ of degree 6p-6 such that

- (i) Γ is defined on $y \in H^2(CP^\infty; Z_p)$ $u \in H^4(HP^\infty; Z_p)$
- (ii) $\Gamma(y) = cy^{3p-2}$, modulo zero, where $c \neq 0$ in \mathbb{Z}_p ,
- (iii) $\Gamma(u) = 2cu^{(3p-1)/2}$, modulo zero.

PROPOSITIONS II.11 and II.12 are proved as in [9] using [2].

PROPOSITION II.14. (i) The only nontrivial differential in the Adams spectral sequence for CP^{∞} and $p \ge 5$ for total degree $\le 6p - 4$ is given by

$$d_2(e_{0,4p-2}) = be_{1,4p-2} * g_0,$$

where $b \neq 0$ in Z_p .

(ii) Statement (i) is valid for p = 3 in total degrees ≤ 13 .

Proof. Consider the case $p \ge 5$. According to Proposition II.10 all nonzero elements of $\operatorname{Ext}_w(M, Z_p)$ have even total degree—except $e_{1,4p-2}$ and $e_{1,4p-2} * g_0$. The only elements in total degree 4p-4 are the basis elements $e_{1,2p-2+2p-1} * g_0^n$. Theorem I.6. shows that all differentials vanish on $e_{1,4p-2}$ for $e_{1,4p-2} * g_0^2 = 0$. In order to prove (i) it remains to show that the stable mod p Hurewicz homomorphism is zero in dimension 4p-2. This is taken care of by Proposition II.12.

THEOREM II.15. (i) If $p \ge 5$ the groups $\Pi_k^S(CP^\infty; p)$ for $k \le 6p-4$ are as follows:

$$\Pi_k^S(CP^{\infty}; p) = Z$$
 if $k = 2_i$, $1 \le i \le 3p - 2$,
 $\Pi_k^S(CP^{\infty}; p) = 0$ if $k = 2i + 1$, $i \ne 2p - 2$
 $\Pi_k^S(CP^{\infty}; p) = Z_p$ if $k = 4p - 3$;

(ii) the groups $\Pi_k^S(CP^\infty; 3)$ for $k \le 12$ are as follows:

k: 2 3 4 5 6 7 8 9 10 11 12
$$\Pi_k^{S}$$
: Z 0 Z 0 Z 0 Z Z_3 Z 0 $Z \oplus Z_3$.

Proof. Propositions II.10, II.14.

PROPOSITION II.16. In the Adams spectral sequence for HP^{∞} and $p \ge 3$ the only nontrivial differential for total degrees $\le 6p-2$ is

$$d_2(e_{0,6p-2}) = be_{0,4} * h_0 g_0,$$

where $b \neq 0$ in Z_p .

Proof. According to Proposition II.11 the only elements of odd total degree $\leq 6p-2$ are the classes $e_{0,4}*h_0g_0^r$, r=0,1,2. All differentials on $e_{0,4}$ vanish, thus we only need to evaluate d_2 and d_3 on $e_{0,6p-2}$. Proposition II.13 implies that one of these two differentials is nonzero on $e_{0,6p-2}$. We use a folk theorem, which can be proved using the approach of [8] to the Adams spectral sequence: suppose a stable secondary cohomology operation corresponding to an element $u \in E_2^2*$, has a minimal A-generator as image; suppose this generator determines the class $v \in E_2^{0,*}$ then $d_2(v) = u$. The proof is completed by remarking that the operation Γ of Proposition II.13 corresponds to $e_{0,4}*h_0g_0$.

THEOREM II.17. If $p \ge 3$, the groups $\Pi_m^S(HP^\infty;p)$ for $m \le 6p-2$ are as follows

$$\begin{split} \Pi_{4k}^{S}(HP^{\infty};p) &= Z & 0 < 4k \leq 6p - 2, \\ \Pi_{2j-1}^{S}(HP^{\infty};p) &= 0 & 2j - 1 \leq 6p - 2, \quad j \neq 3p - 1, \\ \Pi_{6p-3}^{S}(HP^{\infty};p) &= Z_{p}. \end{split}$$

Proof. Proposition II. 16.

REFERENCES

- 1. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214.
- 2. ——, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104.
- 3. ——, A finiteness theorem in homological algebra, Proc. Cambridge Philos. Soc. 57 (1961), 31-36.
 - 4. ——, Stable homotopy theory, (lecture notes), Berkeley, 1961.
- 5. A. Borel et J.-P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math 75 (1953), 409-448.
- 6. Séminaire Henri Cartan, 11ème année: 1958/59: Invariant de Hopf et operations cohomologiques secondaires, Paris, 1959.
 - 7. S. Eilenberg, Homological dimension and syzygies, Ann. of Math. (2) 64 (1956), 328-336.
- 8. H. Gershenson, Relationships between the Adams spectral sequence and Toda's calculations of the stable homotopy of spheres, Math. Z. 81 (1963), 229-259.
- 9. A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. No. 42 (1962), 113 pp.
 - 10. ——, Homotopy of Thom spectra, Amer. J. Math. (to appear).
 - 11. J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171.
 - 12. J. Milnor and J. C. Moore, On the structure of Hopf algebras (to appear).
- 13. C. T. C. Wall, Generators and relations for the Steenrod algebra, Ann. of Math. (2) 72, (1960), 429-444.
- 14. ——, Resolutions for extensions of groups, Proc. Cambridge Philos. Soc. 57 (1961) 251-255.

THE UNIVERSITY OF CHICAGO,
CHICAGO, ILLINOIS
THE INSTITUTE FOR ADVANCED STUDY,
PRINCETON, NEW JERSEY